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Outline 

• Introduction. 

• Limitations in the current Probabilistic 
Guarantees analysis. 

• The Markov Computation Time Model 
(MCTM). 

• Stochastic Analysis of the MCTM. 

• Estimating the MCTM parameters. 

• Experimental Validation. 
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Soft Real-Time Systems 

• Hard real-time systems: 

– Mature and effective methods. 

– However, many recent real-time systems are not 
hard real-time. 

• Soft real-time systems: 

– Resilient to occasional and controlled timing 
failures. 
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Examples 
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Probabilistic Guarantees 

• Performance specifications stated in probabilistic 
terms: 

– Associate each task with a probability of respecting the 
deadline. 

– Timing requirement to enforce: respect the deadline 
with a given probability. 

• State of the art: Numerical methods and analytic 
bounds. 

• Stochastic analysis based on the i.i.d. assumption. 
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• Resource Reservations: 

– Scheduling parameters: Qs and Ts. 

– Executes Qs time units in every reservation period Ts. 

– Guarantees temporal isolation. 

• CBS scheduler: SCHED_DEADLINE. 

• The probability of respecting the deadline is: 

 

Reservation-based scheduling 
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CBS as a Markov chain 
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• Model for the evolution of      : 
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• Model for the evolution of      : 
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• State of the system: 
 

 



CBS as a Markov chain 
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• Model for the evolution of      : 
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• State of the system: 
 

• Define the probability: 

 



• Dynamic of the workload modeled as a queue1: 

 

 
 

CBS as a Markov chain 
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• Dynamic of the workload modeled as a queue1: 

 

 

• Introduce the vector: 
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• Dynamic of the workload modeled as a queue1: 

 

 

• Introduce the vector: 
 

• Probability evolution: 
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• Dynamic of the workload modeled as a queue1: 

 

 

• Introduce the vector: 
 

• Probability evolution: 
 

• Steady state: 
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Results on i.i.d. execution times 

8 

• Test for independence1: Runs of “above and below the 
mean” with 0.05 significance level: 

z-statistic p-value (>0.05) hypothesis 

-0.5295 0.2938 Accepted 

1 Liu, R., Mills, A. and Anderson, J., “Independence Thresholds: Balancing Tractability and Practicality in Soft Real-Time Stochastic Analysis”, 

   Proceedings of the IEEE Real-Time Systems Symposium, Rome, Italy, December 2014. 
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Results on non i.i.d. execution times 

• Test for independence: Runs of “above and below the 
mean” with 0.05 significance level: 

z-statistic p-value (>0.05) hypothesis 

-100.5715 0.0000 Rejected 



A motivating example 

• Extended use of randomized algorithms in robotics.  

• Path-following robot with image processing. 

• Possibly, different types of environment.  

• The robot will remain in one mode for a while. 

• Then, it will switch mode… continuously. 
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The modeling idea 

• A Markov chain to model the “mode change”: 
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The modeling idea 

• A Markov chain to model the “mode change”: 

 

 

 

• The switching behavior introduces dependencies. 

• Finite number of modes. 

• If transitions are defined as a Markov Process. 

• Model corresponds to a Markov Modulated Process. 

• More precisely: a hidden Markov model.  
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The Markov Computation Time Model 

• A Markov Computation Time Model (MCTM) is 
defined as the triple 
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The Markov Computation Time Model 

• A Markov Computation Time Model (MCTM) is 
defined as the triple 

 

 

 

• Assumptions: 

– Job’s execution time only depends on the current 
mode. 

– The “mode change” event is independent both from: 

• The current computation workload. 

• The execution time required by the previous job. 
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The Markov Computation Time Model 
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By modeling the dependencies as a 
Markov system with a switching 
behavior, it is possible to describe, 
more precisely, the non i.i.d. 
execution times. 



Stochastic Analysis 
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• The new model of the system: 
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• The new model of the system: 
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• The new model of the system: 
 

 

 

 

 

 

 

• Probability evolution: 

 



A Markov chain 
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A Markov chain 
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Stochastic Analysis 

• Each individual block (Pe) is given by: 
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16 



Stochastic Analysis 

• Each individual block (Pe) is given by: 

 

 

 with: 

 

• Numerically solved: 

– Cyclic or Logarithmic Reduction. 
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Stochastic Analysis 

• Each individual block (Pe) is given by: 

 

 

 with: 

 

• Numerically solved: 

– Cyclic or Logarithmic Reduction. 

• Steady state distribution of the response time: 
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Stochastic Analysis 
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By presenting the MCTM as a 
QBDP and using the available 
numeric solutions, it is possible to 
obtain the probability of 
respecting the deadline for the 
proposed model. 



Parameter Identification 

• Identify the values of 

• Solved by the Baum-Welch algorithm: 

– Iterative estimation of the parameters. 

– Convergence to the maximum likelihood matrices. 
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Parameter Validation 

• Validate the estimated values of 

• Solved by the Viterbi algorithm: 

– Generates a sequence of hidden states. 

– Obtains N sub-sequences of execution times. 

• Perform a numerical test for independence. 
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Results on non i.i.d. execution times 
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Mode z-statistic p-value (>0.05) hypothesis 

1 0.6585 0.7449 Accepted 

2 -0.3214 0.3739 Accepted 



Parameter Estimation 
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By applying standard identification 
techniques on hidden Markov 
models, it is possible to estimate 
the parameters describing the 
Markov Computation Time Model. 



Experimental Setup 

• Robotic vision application. 

• Two operating conditions. 

• 100 sequences of 
observations. 

• 18400 execution times per 
sequence. 

• WandBoard running 
Ubuntu. 

• Linux Kernel 4.8.1 

22 



Parameter Estimation 

• Execution times 
obtained from image 
processing algorithm. 

• Strong autocorrelation. 

• Test for independence: 
Runs of “above and 
below the mean” with 
0.05 significance level. 
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z-statistic p-value (>0.05) hypothesis 

-37.3271 0.0000 Rejected 



Parameter Estimation 

• Applying the estimation technique for different input data. 

• Consistently identified a 5-modes MCTM. 

• Test for independence: Runs of “above and below the mean” with 
0.05 significance level. 
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Mode z-statistic p-value (>0.05) hypothesis 

1 -1.3929 0.0818 Accepted 

2 -1.1932 0.1164 Accepted 

3 -1.1088 0.1338 Accepted 

4 -1.5830 0.0567 Accepted 

5 -0.6522 0.2571 Accepted 



Fixed bandwidth (16%) 

• Scheduling parameters: 
– T = 100 ms. 

– (Ts, Qs) = (25 ms, 4 ms). 

• Probability of respecting 
the deadline: 

 

 

• Overestimation when 
considering the i.i.d. model. 

• Good match: MCTM vs. 
Real application. 
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Fixed bandwidth (70%) 

• Scheduling parameters: 
– T = 200 ms. 

– (Ts, Qs) = (50 ms, 35 ms). 

• Probability of respecting 
the deadline: 

 

 

• Overestimation when 
considering the i.i.d. model  

• Good match: MCTM vs. 
Real application. 
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Fixed deadline (D = T) 
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• Different values for the bandwidth are explored. 

• Good performance of the approach compared with 
the real application. 



Conclusions 

• Provided probabilistic guarantees for soft 
real-time systems characterized by 
dependencies in the execution times. 

• Introduced a Markovian representation of the 
system to model these dependencies. 

• Adapted the techniques for probabilistic 
guarantees to the case of MCTM. 

• Shown a technique for the estimation of the 
MCTM parameters. 
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