



UNIVERSITÀ DEGLI STUDI DI TRENTO

# Probabilistic Real-Time Guarantees: There is life beyond the i.i.d. assumption

# **Bernardo Villalba Frías**<sup>1</sup>, Luigi Palopoli<sup>1</sup>, Luca Abeni<sup>2</sup> and Daniele Fontanelli<sup>3</sup>

<sup>1</sup> Department of Information Engineering and Computer Science – University of Trento
 <sup>2</sup> ReTiS Laboratory – Scuola Superiore Sant'Anna
 <sup>3</sup> Department of Industrial Engineering – University of Trento

# Outline

- Introduction.
- Limitations in the current Probabilistic Guarantees analysis.
- The Markov Computation Time Model (MCTM).
- Stochastic Analysis of the MCTM.
- Estimating the MCTM parameters.
- Experimental Validation.

### Soft Real-Time Systems

- Hard real-time systems:
  - Mature and effective methods.
  - However, many recent real-time systems are not hard real-time.
- Soft real-time systems:
  - Resilient to occasional and controlled timing failures.

### Examples







Infotainment

#### Examples











**Visual Control** 

### **Probabilistic Guarantees**

- Performance specifications stated in probabilistic terms:
  - Associate each task with a probability of respecting the deadline.
  - Timing requirement to enforce: respect the deadline with a given probability.
- State of the art: Numerical methods and analytic bounds.
- Stochastic analysis based on the i.i.d. assumption.

# **Reservation-based scheduling**



- Resource Reservations:
  - Scheduling parameters: Q<sup>s</sup> and T<sup>s</sup>.
  - Executes Q<sup>s</sup> time units in every reservation period T<sup>s</sup>.
  - Guarantees temporal isolation.
- CBS scheduler: SCHED\_DEADLINE.
- The probability of **respecting the deadline** is:

 $\mathbf{Pr}\left\{\delta_{j}\leq T\right\}$ 

• Model for the evolution of  $\delta_j$ :

$$v_1 = c_1$$
  

$$v_j = \max\{0, v_{j-1} - \frac{T}{T^s}Q^s\} + c_j$$
  

$$\delta_j = \left\lceil \frac{v_j}{Q^s} \right\rceil T^s$$

with  $C(c) = \Pr \{ c_j = c \}$ 

• Model for the evolution of  $\delta_j$ :

$$v_1 = c_1$$
  

$$v_j = \max\{0, v_{j-1} - \frac{T}{T^s}Q^s\} + c_j$$
  

$$\delta_j = \left\lceil \frac{v_j}{Q^s} \right\rceil T^s$$

with 
$$C(c) = \Pr \{ c_j = c \}$$

• State of the system:

$$\mathcal{S}_h(j) = \left\{ v_j = c^{\min} + h \right\}$$

• Model for the evolution of  $\delta_j$ :

$$v_1 = c_1$$
  

$$v_j = \max\{0, v_{j-1} - \frac{T}{T^s}Q^s\} + c_j$$
  

$$\delta_j = \left\lceil \frac{v_j}{Q^s} \right\rceil T^s$$

with 
$$C(c) = \Pr \{ c_j = c \}$$

• State of the system:

$$\mathcal{S}_h(j) = \left\{ v_j = c^{\min} + h \right\}$$

• Define the probability:  $\pi_h(j) = \Pr \{S_h(j)\}$ 

• Dynamic of the workload modeled as a queue<sup>1</sup>:



• Dynamic of the workload modeled as a queue<sup>1</sup>:



• Introduce the vector:

 $\Pi(j) = [\pi_0(j) \ \pi_1(j) \ \pi_2(j) \ \dots]$ 

• Dynamic of the workload modeled as a queue<sup>1</sup>:



• Introduce the vector:

 $\Pi(j) = [\pi_0(j) \ \pi_1(j) \ \pi_2(j) \ \dots]$ 

• Probability evolution:  $\Pi(j) = \Pi(j-1)P$ 

|     | $\begin{bmatrix} a_0 \\ a_0 \end{bmatrix}$ | $a_1 \\ a_1$ | $a_2 \\ a_2$ |       | $a_n \\ a_n$ | $\begin{array}{c} 0 \\ 0 \end{array}$ | $\begin{array}{c} 0 \\ 0 \end{array}$ | 0<br>0 | <br> |
|-----|--------------------------------------------|--------------|--------------|-------|--------------|---------------------------------------|---------------------------------------|--------|------|
|     | :                                          | ÷            |              | ÷     | ÷            | ÷                                     | ÷                                     |        |      |
| P = | $a_0$                                      | $a_1$        | $a_2$        | • • • | $a_n$        | 0                                     | 0                                     | 0      |      |
|     | 0                                          | $a_0$        | $a_1$        | $a_2$ |              | $a_n$                                 | 0                                     | 0      |      |
|     | 0                                          | 0            | $a_0$        | $a_1$ | $a_2$        | •••                                   | $a_n$                                 | 0      |      |
|     | :                                          | :            | ·            | ·     | ·            | ۰.                                    | ۰.                                    | ·      | ·    |

7

Dynamic of the workload modeled as a queue<sup>1</sup>:



• Introduce the vector:

 $\Pi(j) = [\pi_0(j) \ \pi_1(j) \ \pi_2(j) \ \dots]$ 

- Probability evolution:  $\Pi(j) = \Pi(j-1)P$
- Steady state:

 $\overline{\Pi} = \lim_{j \to \infty} \Pi(j)$ 

 $P = \begin{bmatrix} a_0 & a_1 & a_2 & \dots & a_n & 0 & 0 & 0 & \dots \\ a_0 & a_1 & a_2 & \dots & a_n & 0 & 0 & 0 & \dots \\ \vdots & \ddots \\ a_0 & a_1 & a_2 & \dots & a_n & 0 & 0 & 0 & \dots \\ 0 & a_0 & a_1 & a_2 & \dots & a_n & 0 & 0 & \dots \\ 0 & 0 & a_0 & a_1 & a_2 & \dots & a_n & 0 & \dots \\ \vdots & \vdots & \ddots \\ \end{bmatrix}$ 

7

### Results on i.i.d. execution times



 Test for independence<sup>1</sup>: Runs of "above and below the mean" with 0.05 significance level:

| z-statistic | p-value (>0.05) | hypothesis |
|-------------|-----------------|------------|
| -0.5295     | 0.2938          | Accepted   |

<sup>1</sup> Liu, R., Mills, A. and Anderson, J., "Independence Thresholds: Balancing Tractability and Practicality in Soft Real-Time Stochastic Analysis", Proceedings of the IEEE Real-Time Systems Symposium, Rome, Italy, December 2014.

#### Results on non i.i.d. execution times



• Test for independence: Runs of "above and below the mean" with 0.05 significance level:

| z-statistic | p-value (>0.05) | hypothesis |
|-------------|-----------------|------------|
| -100.5715   | 0.0000          | Rejected   |

# A motivating example



- Extended use of **randomized algorithms** in robotics.
- Path-following robot with image processing.
- Possibly, different types of environment.
- The robot will remain in **one mode** for a while.
- Then, it will **switch mode**... continuously.

### The modeling idea

• A Markov chain to model the "mode change":



# The modeling idea

A Markov chain to model the "mode change":



- The switching behavior introduces dependencies.
- Finite number of modes.
- If transitions are defined as a Markov Process.
- Model corresponds to a Markov Modulated Process.
- More precisely: a hidden Markov model.

### The Markov Computation Time Model

 A Markov Computation Time Model (MCTM) is defined as the triple {*M*, *P*, *C*}

$$\mathcal{M} = \{m_1, \dots, m_N\}$$
$$\mathcal{P} = (p_{a,b}), \ \forall a, b \in \mathcal{M}$$
$$p_{a,b} = \mathbf{Pr} \{m_j = b | m_{j-1} = a\}$$
$$\mathcal{C} = \{C_{m_j} : m_j \in \mathcal{M}\}$$

# The Markov Computation Time Model

 A Markov Computation Time Model (MCTM) is defined as the triple {*M*, *P*, *C*}

$$\mathcal{M} = \{m_1, \dots, m_N\}$$
$$\mathcal{P} = (p_{a,b}), \ \forall a, b \in \mathcal{M}$$
$$p_{a,b} = \mathbf{Pr} \{m_j = b \mid m_{j-1} = a\}$$
$$\mathcal{C} = \{C_{m_j} : m_j \in \mathcal{M}\}$$

- Assumptions:
  - Job's execution time only depends on the current mode.
  - The "mode change" event is **independent** both from:
    - The current computation workload.
    - The execution time required by the previous job.

### The Markov Computation Time Model

By modeling the **dependencies** as a Markov system with a **switching behavior**, it is possible to **describe**, more precisely, the **non i.i.d. execution times**.

• The new model of the system:



• The new model of the system:



$$S_h(j) = \{ v_j = c^{\min} + h \}$$
  

$$\pi_h(j) = \mathbf{Pr} \{ S_h(j) \}$$
  

$$\Pi(j) = [\pi_0(j) \ \pi_1(j) \ \pi_2(j) \ \dots]$$

$$S_{g,h}(j) = \{m_j = g\} \land \{v_j = c^{\min} + h\}$$
  

$$\pi_{g,h}(j) = \mathbf{Pr} \{S_{g,h}(j)\}$$
  

$$\Pi_h(j) = [\pi_{1,h}(j) \ \pi_{2,h}(j) \ \dots \ \pi_{N,h}(j)]$$
  

$$\Pi(j) = [\Pi_0(j) \ \Pi_1(j) \ \Pi_2(j) \ \dots]$$

• The new model of the system:



$$S_{h}(j) = \{v_{j} = c^{\min} + h\} \qquad S_{g,h}(j) = \{m_{j} = g\} \land \{v_{j} = c^{\min} + h\} \\ \pi_{h}(j) = \mathbf{Pr} \{S_{h}(j)\} \qquad \Longrightarrow \qquad \pi_{g,h}(j) = \mathbf{Pr} \{S_{g,h}(j)\} \\ \Pi(j) = [\pi_{0}(j) \ \pi_{1}(j) \ \pi_{2}(j) \ \dots] \qquad \Pi_{h}(j) = [\pi_{1,h}(j) \ \pi_{2,h}(j) \ \dots \ \pi_{N,h}(j)] \\ \Pi(j) = [\Pi_{0}(j) \ \Pi_{1}(j) \ \Pi_{2}(j) \ \dots]$$

• Probability evolution:

$$\Pi(j) = \Pi(j-1)P$$
$$\overline{\Pi} = \lim_{j \to \infty} \Pi(j)$$

#### A Markov chain



#### A Markov chain



• Each individual block (P<sub>e</sub>) is given by:

$$P_{e} = \begin{bmatrix} p_{1,1} \cdot \alpha_{1,e} & p_{1,2} \cdot \alpha_{2,e} & \dots & p_{1,N} \cdot \alpha_{N,e} \\ p_{2,1} \cdot \alpha_{1,e} & p_{2,2} \cdot \alpha_{2,e} & \dots & p_{2,N} \cdot \alpha_{N,e} \\ \dots & \dots & \dots & \dots \\ p_{N,1} \cdot \alpha_{1,e} & p_{N,2} \cdot \alpha_{2,e} & \dots & p_{N,N} \cdot \alpha_{N,e} \end{bmatrix}$$

#### with:

$$p_{a,b} = \mathbf{Pr} \{ m_j = b \mid m_{j-1} = a \}$$
  
$$\alpha_{b,h} = C_b(c^{\min} + h)$$

• Each individual block (P<sub>e</sub>) is given by:

$$P_{e} = \begin{bmatrix} p_{1,1} \cdot \alpha_{1,e} & p_{1,2} \cdot \alpha_{2,e} & \dots & p_{1,N} \cdot \alpha_{N,e} \\ p_{2,1} \cdot \alpha_{1,e} & p_{2,2} \cdot \alpha_{2,e} & \dots & p_{2,N} \cdot \alpha_{N,e} \\ \dots & \dots & \dots & \dots \\ p_{N,1} \cdot \alpha_{1,e} & p_{N,2} \cdot \alpha_{2,e} & \dots & p_{N,N} \cdot \alpha_{N,e} \end{bmatrix}$$

#### with:

$$p_{a,b} = \operatorname{\mathbf{Pr}} \{ m_j = b | m_{j-1} = a \}$$
  
$$\alpha_{b,h} = C_b(c^{\min} + h)$$

• Numerically solved:

- Cyclic or Logarithmic Reduction.

• Each individual block (P<sub>e</sub>) is given by:

$$P_{e} = \begin{bmatrix} p_{1,1} \cdot \alpha_{1,e} & p_{1,2} \cdot \alpha_{2,e} & \dots & p_{1,N} \cdot \alpha_{N,e} \\ p_{2,1} \cdot \alpha_{1,e} & p_{2,2} \cdot \alpha_{2,e} & \dots & p_{2,N} \cdot \alpha_{N,e} \\ \dots & \dots & \dots & \dots \\ p_{N,1} \cdot \alpha_{1,e} & p_{N,2} \cdot \alpha_{2,e} & \dots & p_{N,N} \cdot \alpha_{N,e} \end{bmatrix}$$

with:

$$p_{a,b} = \Pr\{m_j = b | m_{j-1} = a\}$$
$$\alpha_{b,h} = C_b(c^{\min} + h)$$

- Numerically solved:
  - Cyclic or Logarithmic Reduction.
- Steady state distribution of the response time:  $\lim_{j\to\infty} \Pr \left\{ \delta_j \leq D \right\}$

By presenting the MCTM as a QBDP and using the available numeric solutions, it is possible to obtain the probability of respecting the deadline for the proposed model.

### **Parameter Identification**



- Identify the values of  $\{\mathcal{M}, \mathcal{P}, \mathcal{C}\}$
- Solved by the **Baum-Welch algorithm**:
  - Iterative estimation of the parameters.
  - Convergence to the maximum likelihood matrices.

### **Parameter Validation**



- Validate the estimated values of  $\{\mathcal{M}, \mathcal{P}, \mathcal{C}\}$
- Solved by the Viterbi algorithm:
  - Generates a sequence of hidden states.
  - Obtains N sub-sequences of execution times.
- Perform a numerical test for independence.

#### Results on non i.i.d. execution times



| Mode | z-statistic | p-value (>0.05) | hypothesis |
|------|-------------|-----------------|------------|
| 1    | 0.6585      | 0.7449          | Accepted   |
| 2    | -0.3214     | 0.3739          | Accepted   |



#### **Parameter Estimation**

By applying standard identification techniques on hidden Markov models, it is possible to estimate the parameters describing the Markov Computation Time Model.

# **Experimental Setup**

- Robotic vision application.
- Two operating conditions.
- 100 sequences of observations.
- 18400 execution times per sequence.
- WandBoard running Ubuntu.
- Linux Kernel 4.8.1





#### **Parameter Estimation**

- Execution times obtained from image processing algorithm.
- Strong autocorrelation.
- Test for independence: Runs of "above and below the mean" with 0.05 significance level.



| z-statistic | p-value (>0.05) | hypothesis |
|-------------|-----------------|------------|
| -37.3271    | 0.0000          | Rejected   |

#### **Parameter Estimation**



- Applying the estimation technique for different input data.
- Consistently identified a 5-modes MCTM.
- Test for independence: Runs of "above and below the mean" with 0.05 significance level.

| Mode | z-statistic | p-value (>0.05) | hypothesis |
|------|-------------|-----------------|------------|
| 1    | -1.3929     | 0.0818          | Accepted   |
| 2    | -1.1932     | 0.1164          | Accepted   |
| 3    | -1.1088     | 0.1338          | Accepted   |
| 4    | -1.5830     | 0.0567          | Accepted   |
| 5    | -0.6522     | 0.2571          | Accepted   |

# Fixed bandwidth (16%)

- Scheduling parameters:
  - T = 100 ms.
  - (T<sup>s</sup>, Q<sup>s</sup>) = (25 ms, 4 ms).
- Probability of respecting the deadline:

 $\frac{\# \text{ of jobs respecting the deadline}}{\# \text{ of jobs}}$ 

- **Overestimation** when considering the i.i.d. model.
- Good match: MCTM vs. Real application.



# Fixed bandwidth (70%)

- Scheduling parameters:
  - T = 200 ms.
  - (T<sup>s</sup>, Q<sup>s</sup>) = (50 ms, 35 ms).
- Probability of respecting the deadline:

 $\frac{\text{\# of jobs respecting the deadline}}{\text{\# of jobs}}$ 

- Overestimation when considering the i.i.d. model
- Good match: MCTM vs. Real application.



# Fixed deadline (D = T)



- Different values for the bandwidth are explored.
- **Good performance** of the approach compared with the real application.

## Conclusions

- Provided probabilistic guarantees for soft real-time systems characterized by dependencies in the execution times.
- Introduced a Markovian representation of the system to model these dependencies.
- Adapted the techniques for **probabilistic guarantees** to the case of **MCTM**.
- Shown a technique for the **estimation** of the **MCTM parameters**.

# Probabilistic Real-Time Guarantees: There is life beyond the i.i.d. assumption

# Thanks.

Bernardo Villalba Frías br.villalbafrias@unitn.it