

UNIVERSITÀ DEGLI STUDI DI TRENTO

Probabilistic Real-Time Guarantees: There is life beyond the i.i.d. assumption

Bernardo Villalba Frías¹, Luigi Palopoli¹, Luca Abeni² and Daniele Fontanelli³

¹ Department of Information Engineering and Computer Science – University of Trento
 ² ReTiS Laboratory – Scuola Superiore Sant'Anna
 ³ Department of Industrial Engineering – University of Trento

Outline

- Introduction.
- Limitations in the current Probabilistic Guarantees analysis.
- The Markov Computation Time Model (MCTM).
- Stochastic Analysis of the MCTM.
- Estimating the MCTM parameters.
- Experimental Validation.

Soft Real-Time Systems

- Hard real-time systems:
 - Mature and effective methods.
 - However, many recent real-time systems are not hard real-time.
- Soft real-time systems:
 - Resilient to occasional and controlled timing failures.

Examples

Infotainment

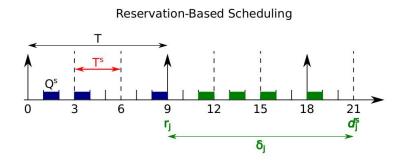
Examples

Visual Control

Probabilistic Guarantees

- Performance specifications stated in probabilistic terms:
 - Associate each task with a probability of respecting the deadline.
 - Timing requirement to enforce: respect the deadline with a given probability.
- State of the art: Numerical methods and analytic bounds.
- Stochastic analysis based on the i.i.d. assumption.

Reservation-based scheduling



- Resource Reservations:
 - Scheduling parameters: Q^s and T^s.
 - Executes Q^s time units in every reservation period T^s.
 - Guarantees temporal isolation.
- CBS scheduler: SCHED_DEADLINE.
- The probability of **respecting the deadline** is:

 $\mathbf{Pr}\left\{\delta_{j}\leq T\right\}$

• Model for the evolution of δ_j :

$$v_1 = c_1$$

$$v_j = \max\{0, v_{j-1} - \frac{T}{T^s}Q^s\} + c_j$$

$$\delta_j = \left\lceil \frac{v_j}{Q^s} \right\rceil T^s$$

with $C(c) = \Pr \{ c_j = c \}$

• Model for the evolution of δ_j :

$$v_1 = c_1$$

$$v_j = \max\{0, v_{j-1} - \frac{T}{T^s}Q^s\} + c_j$$

$$\delta_j = \left\lceil \frac{v_j}{Q^s} \right\rceil T^s$$

with
$$C(c) = \Pr \{ c_j = c \}$$

• State of the system:

$$\mathcal{S}_h(j) = \left\{ v_j = c^{\min} + h \right\}$$

• Model for the evolution of δ_j :

$$v_1 = c_1$$

$$v_j = \max\{0, v_{j-1} - \frac{T}{T^s}Q^s\} + c_j$$

$$\delta_j = \left\lceil \frac{v_j}{Q^s} \right\rceil T^s$$

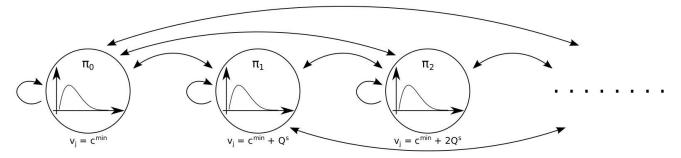
with
$$C(c) = \Pr \{ c_j = c \}$$

• State of the system:

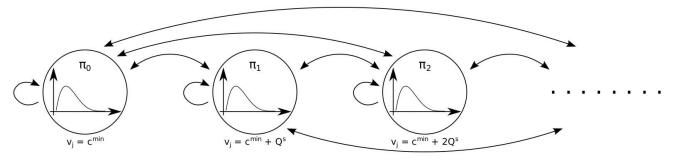
$$\mathcal{S}_h(j) = \left\{ v_j = c^{\min} + h \right\}$$

• Define the probability: $\pi_h(j) = \Pr \{S_h(j)\}$

• Dynamic of the workload modeled as a queue¹:



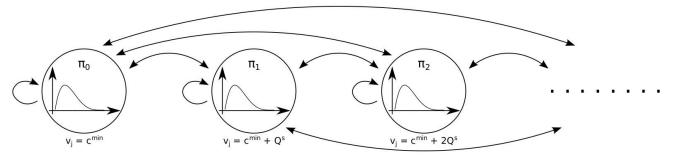
• Dynamic of the workload modeled as a queue¹:



• Introduce the vector:

 $\Pi(j) = [\pi_0(j) \ \pi_1(j) \ \pi_2(j) \ \dots]$

• Dynamic of the workload modeled as a queue¹:



• Introduce the vector:

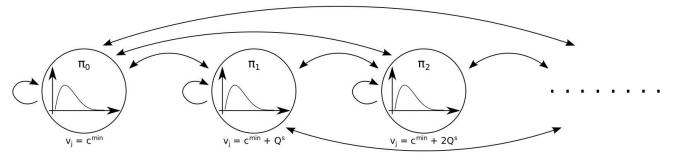
 $\Pi(j) = [\pi_0(j) \ \pi_1(j) \ \pi_2(j) \ \dots]$

• Probability evolution: $\Pi(j) = \Pi(j-1)P$

	$\begin{bmatrix} a_0 \\ a_0 \end{bmatrix}$	$a_1 \\ a_1$	$a_2 \\ a_2$		$a_n \\ a_n$	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	0 0	
	:	÷		÷	÷	÷	÷		
P =	a_0	a_1	a_2	• • •	a_n	0	0	0	
	0	a_0	a_1	a_2		a_n	0	0	
	0	0	a_0	a_1	a_2	•••	a_n	0	
	:	:	·	·	·	۰.	۰.	·	·

7

Dynamic of the workload modeled as a queue¹:



• Introduce the vector:

 $\Pi(j) = [\pi_0(j) \ \pi_1(j) \ \pi_2(j) \ \dots]$

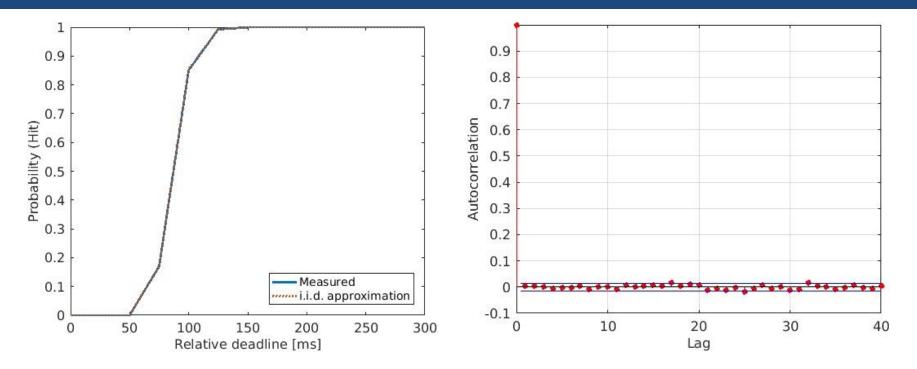
- Probability evolution: $\Pi(j) = \Pi(j-1)P$
- Steady state:

 $\overline{\Pi} = \lim_{j \to \infty} \Pi(j)$

 $P = \begin{bmatrix} a_0 & a_1 & a_2 & \dots & a_n & 0 & 0 & 0 & \dots \\ a_0 & a_1 & a_2 & \dots & a_n & 0 & 0 & 0 & \dots \\ \vdots & \ddots \\ a_0 & a_1 & a_2 & \dots & a_n & 0 & 0 & 0 & \dots \\ 0 & a_0 & a_1 & a_2 & \dots & a_n & 0 & 0 & \dots \\ 0 & 0 & a_0 & a_1 & a_2 & \dots & a_n & 0 & \dots \\ \vdots & \vdots & \ddots \\ \end{bmatrix}$

7

Results on i.i.d. execution times

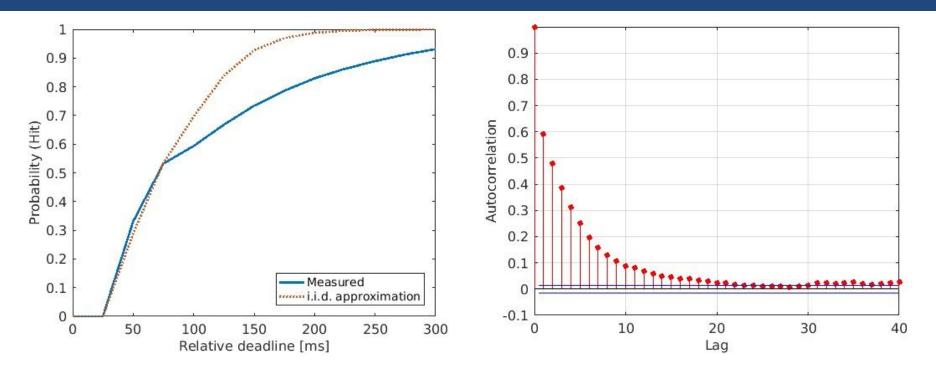


 Test for independence¹: Runs of "above and below the mean" with 0.05 significance level:

z-statistic	p-value (>0.05)	hypothesis
-0.5295	0.2938	Accepted

¹ Liu, R., Mills, A. and Anderson, J., "Independence Thresholds: Balancing Tractability and Practicality in Soft Real-Time Stochastic Analysis", Proceedings of the IEEE Real-Time Systems Symposium, Rome, Italy, December 2014.

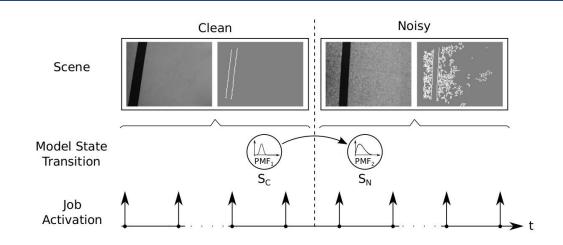
Results on non i.i.d. execution times



• Test for independence: Runs of "above and below the mean" with 0.05 significance level:

z-statistic	p-value (>0.05)	hypothesis
-100.5715	0.0000	Rejected

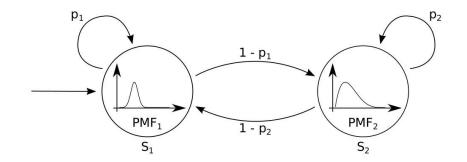
A motivating example



- Extended use of **randomized algorithms** in robotics.
- Path-following robot with image processing.
- Possibly, different types of environment.
- The robot will remain in **one mode** for a while.
- Then, it will **switch mode**... continuously.

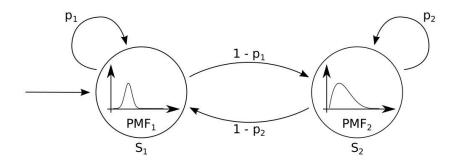
The modeling idea

• A Markov chain to model the "mode change":



The modeling idea

A Markov chain to model the "mode change":



- The switching behavior introduces dependencies.
- Finite number of modes.
- If transitions are defined as a Markov Process.
- Model corresponds to a Markov Modulated Process.
- More precisely: a hidden Markov model.

The Markov Computation Time Model

 A Markov Computation Time Model (MCTM) is defined as the triple {*M*, *P*, *C*}

$$\mathcal{M} = \{m_1, \dots, m_N\}$$
$$\mathcal{P} = (p_{a,b}), \ \forall a, b \in \mathcal{M}$$
$$p_{a,b} = \mathbf{Pr} \{m_j = b | m_{j-1} = a\}$$
$$\mathcal{C} = \{C_{m_j} : m_j \in \mathcal{M}\}$$

The Markov Computation Time Model

 A Markov Computation Time Model (MCTM) is defined as the triple {*M*, *P*, *C*}

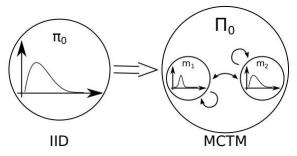
$$\mathcal{M} = \{m_1, \dots, m_N\}$$
$$\mathcal{P} = (p_{a,b}), \ \forall a, b \in \mathcal{M}$$
$$p_{a,b} = \mathbf{Pr} \{m_j = b \mid m_{j-1} = a\}$$
$$\mathcal{C} = \{C_{m_j} : m_j \in \mathcal{M}\}$$

- Assumptions:
 - Job's execution time only depends on the current mode.
 - The "mode change" event is **independent** both from:
 - The current computation workload.
 - The execution time required by the previous job.

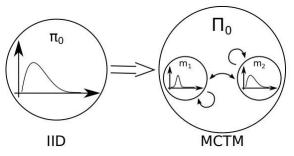
The Markov Computation Time Model

By modeling the **dependencies** as a Markov system with a **switching behavior**, it is possible to **describe**, more precisely, the **non i.i.d. execution times**.

• The new model of the system:



• The new model of the system:



$$S_h(j) = \{ v_j = c^{\min} + h \}$$

$$\pi_h(j) = \mathbf{Pr} \{ S_h(j) \}$$

$$\Pi(j) = [\pi_0(j) \ \pi_1(j) \ \pi_2(j) \ \dots]$$

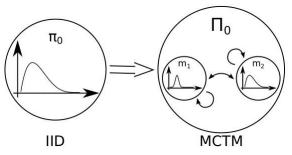
$$S_{g,h}(j) = \{m_j = g\} \land \{v_j = c^{\min} + h\}$$

$$\pi_{g,h}(j) = \mathbf{Pr} \{S_{g,h}(j)\}$$

$$\Pi_h(j) = [\pi_{1,h}(j) \ \pi_{2,h}(j) \ \dots \ \pi_{N,h}(j)]$$

$$\Pi(j) = [\Pi_0(j) \ \Pi_1(j) \ \Pi_2(j) \ \dots]$$

• The new model of the system:

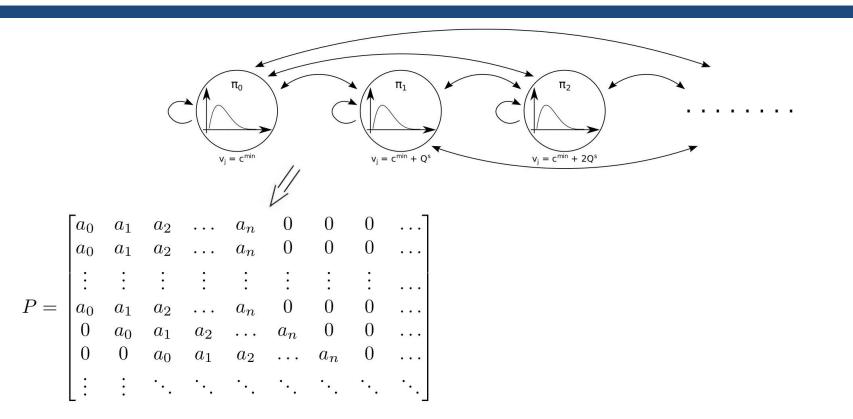


$$S_{h}(j) = \{v_{j} = c^{\min} + h\} \qquad S_{g,h}(j) = \{m_{j} = g\} \land \{v_{j} = c^{\min} + h\} \\ \pi_{h}(j) = \mathbf{Pr} \{S_{h}(j)\} \qquad \Longrightarrow \qquad \pi_{g,h}(j) = \mathbf{Pr} \{S_{g,h}(j)\} \\ \Pi(j) = [\pi_{0}(j) \ \pi_{1}(j) \ \pi_{2}(j) \ \dots] \qquad \Pi_{h}(j) = [\pi_{1,h}(j) \ \pi_{2,h}(j) \ \dots \ \pi_{N,h}(j)] \\ \Pi(j) = [\Pi_{0}(j) \ \Pi_{1}(j) \ \Pi_{2}(j) \ \dots]$$

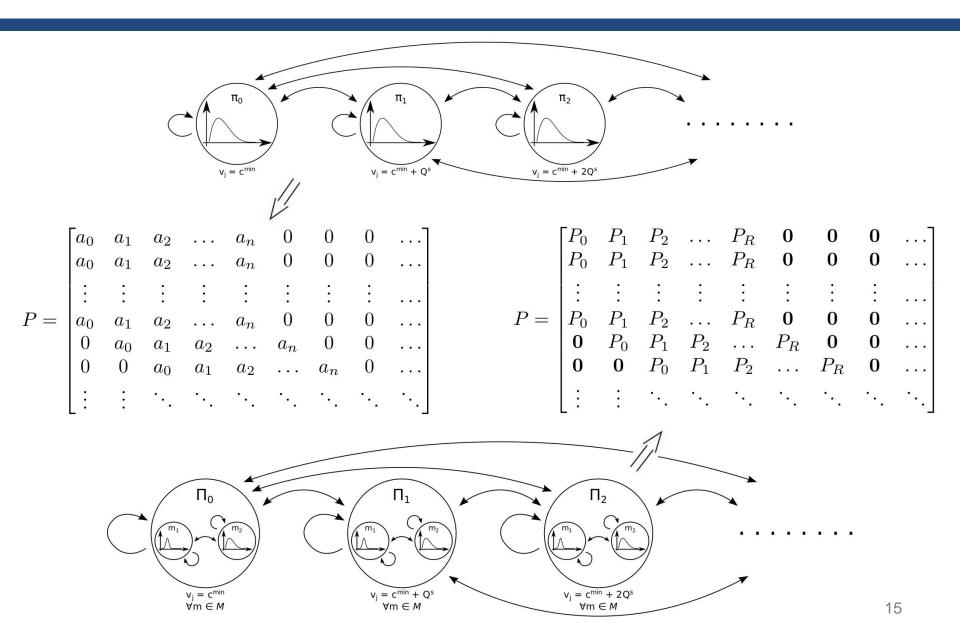
• Probability evolution:

$$\Pi(j) = \Pi(j-1)P$$
$$\overline{\Pi} = \lim_{j \to \infty} \Pi(j)$$

A Markov chain



A Markov chain



• Each individual block (P_e) is given by:

$$P_{e} = \begin{bmatrix} p_{1,1} \cdot \alpha_{1,e} & p_{1,2} \cdot \alpha_{2,e} & \dots & p_{1,N} \cdot \alpha_{N,e} \\ p_{2,1} \cdot \alpha_{1,e} & p_{2,2} \cdot \alpha_{2,e} & \dots & p_{2,N} \cdot \alpha_{N,e} \\ \dots & \dots & \dots & \dots \\ p_{N,1} \cdot \alpha_{1,e} & p_{N,2} \cdot \alpha_{2,e} & \dots & p_{N,N} \cdot \alpha_{N,e} \end{bmatrix}$$

with:

$$p_{a,b} = \mathbf{Pr} \{ m_j = b \mid m_{j-1} = a \}$$

$$\alpha_{b,h} = C_b(c^{\min} + h)$$

• Each individual block (P_e) is given by:

$$P_{e} = \begin{bmatrix} p_{1,1} \cdot \alpha_{1,e} & p_{1,2} \cdot \alpha_{2,e} & \dots & p_{1,N} \cdot \alpha_{N,e} \\ p_{2,1} \cdot \alpha_{1,e} & p_{2,2} \cdot \alpha_{2,e} & \dots & p_{2,N} \cdot \alpha_{N,e} \\ \dots & \dots & \dots & \dots \\ p_{N,1} \cdot \alpha_{1,e} & p_{N,2} \cdot \alpha_{2,e} & \dots & p_{N,N} \cdot \alpha_{N,e} \end{bmatrix}$$

with:

$$p_{a,b} = \operatorname{\mathbf{Pr}} \{ m_j = b | m_{j-1} = a \}$$

$$\alpha_{b,h} = C_b(c^{\min} + h)$$

• Numerically solved:

- Cyclic or Logarithmic Reduction.

• Each individual block (P_e) is given by:

$$P_{e} = \begin{bmatrix} p_{1,1} \cdot \alpha_{1,e} & p_{1,2} \cdot \alpha_{2,e} & \dots & p_{1,N} \cdot \alpha_{N,e} \\ p_{2,1} \cdot \alpha_{1,e} & p_{2,2} \cdot \alpha_{2,e} & \dots & p_{2,N} \cdot \alpha_{N,e} \\ \dots & \dots & \dots & \dots \\ p_{N,1} \cdot \alpha_{1,e} & p_{N,2} \cdot \alpha_{2,e} & \dots & p_{N,N} \cdot \alpha_{N,e} \end{bmatrix}$$

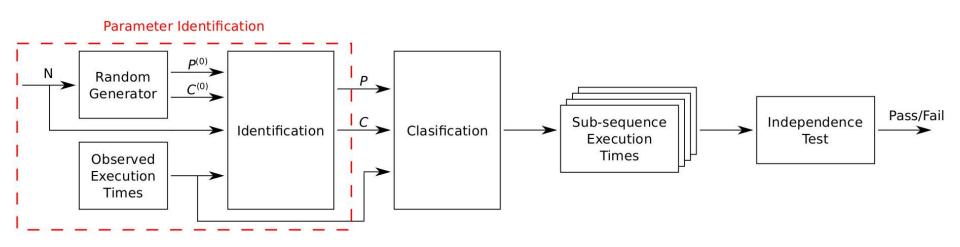
with:

$$p_{a,b} = \Pr\{m_j = b | m_{j-1} = a\}$$
$$\alpha_{b,h} = C_b(c^{\min} + h)$$

- Numerically solved:
 - Cyclic or Logarithmic Reduction.
- Steady state distribution of the response time: $\lim_{j\to\infty} \Pr \left\{ \delta_j \leq D \right\}$

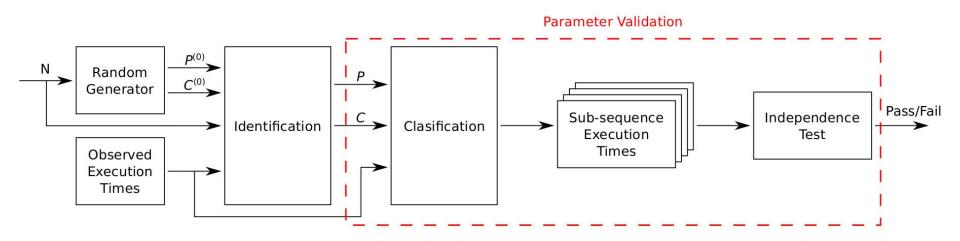
By presenting the MCTM as a QBDP and using the available numeric solutions, it is possible to obtain the probability of respecting the deadline for the proposed model.

Parameter Identification



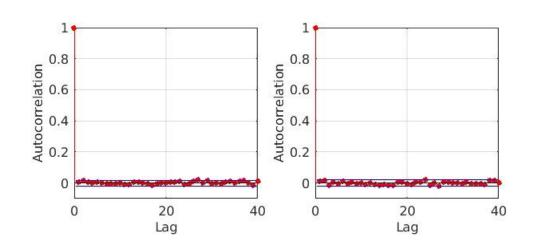
- Identify the values of $\{\mathcal{M}, \mathcal{P}, \mathcal{C}\}$
- Solved by the **Baum-Welch algorithm**:
 - Iterative estimation of the parameters.
 - Convergence to the maximum likelihood matrices.

Parameter Validation

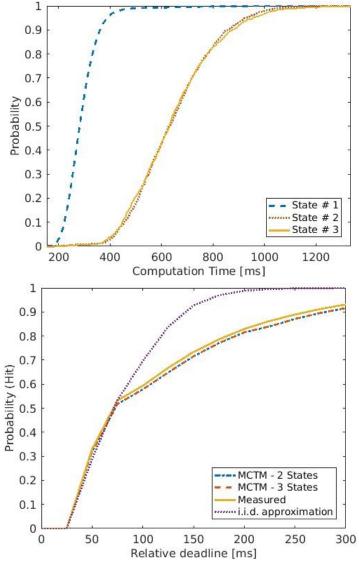


- Validate the estimated values of $\{\mathcal{M}, \mathcal{P}, \mathcal{C}\}$
- Solved by the Viterbi algorithm:
 - Generates a sequence of hidden states.
 - Obtains N sub-sequences of execution times.
- Perform a numerical test for independence.

Results on non i.i.d. execution times



Mode	z-statistic	p-value (>0.05)	hypothesis
1	0.6585	0.7449	Accepted
2	-0.3214	0.3739	Accepted



Parameter Estimation

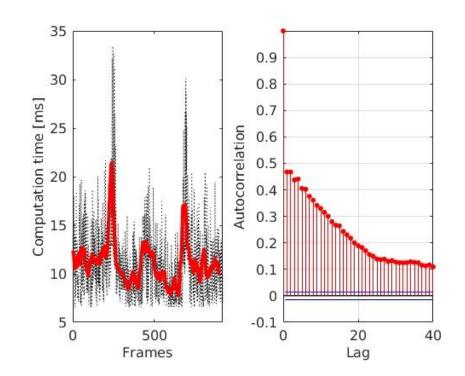
By applying standard identification techniques on hidden Markov models, it is possible to estimate the parameters describing the Markov Computation Time Model.

Experimental Setup

- Robotic vision application.
- Two operating conditions.
- 100 sequences of observations.
- 18400 execution times per sequence.
- WandBoard running Ubuntu.
- Linux Kernel 4.8.1

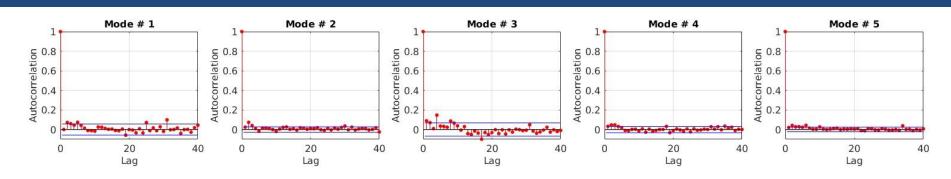
Parameter Estimation

- Execution times obtained from image processing algorithm.
- Strong autocorrelation.
- Test for independence: Runs of "above and below the mean" with 0.05 significance level.



z-statistic	p-value (>0.05)	hypothesis
-37.3271	0.0000	Rejected

Parameter Estimation



- Applying the estimation technique for different input data.
- Consistently identified a 5-modes MCTM.
- Test for independence: Runs of "above and below the mean" with 0.05 significance level.

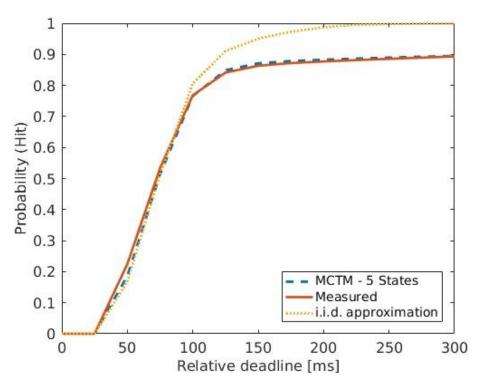
Mode	z-statistic	p-value (>0.05)	hypothesis
1	-1.3929	0.0818	Accepted
2	-1.1932	0.1164	Accepted
3	-1.1088	0.1338	Accepted
4	-1.5830	0.0567	Accepted
5	-0.6522	0.2571	Accepted

Fixed bandwidth (16%)

- Scheduling parameters:
 - T = 100 ms.
 - (T^s, Q^s) = (25 ms, 4 ms).
- Probability of respecting the deadline:

 $\frac{\# \text{ of jobs respecting the deadline}}{\# \text{ of jobs}}$

- **Overestimation** when considering the i.i.d. model.
- Good match: MCTM vs. Real application.

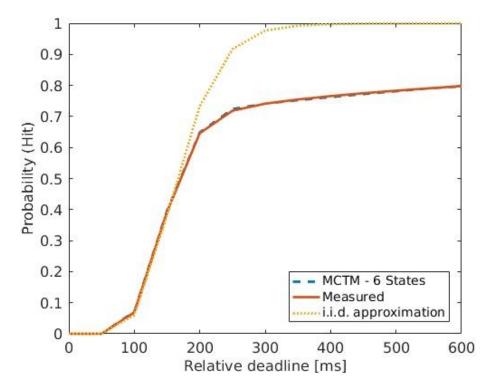


Fixed bandwidth (70%)

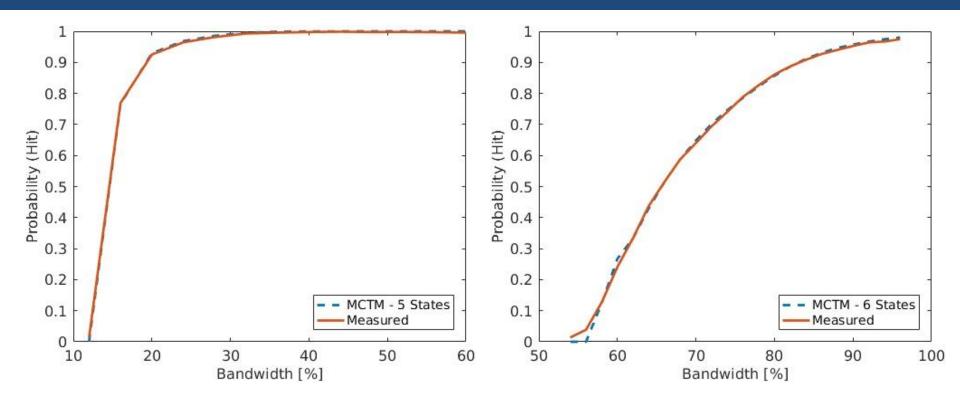
- Scheduling parameters:
 - T = 200 ms.
 - (T^s, Q^s) = (50 ms, 35 ms).
- Probability of respecting the deadline:

 $\frac{\text{\# of jobs respecting the deadline}}{\text{\# of jobs}}$

- Overestimation when considering the i.i.d. model
- Good match: MCTM vs. Real application.



Fixed deadline (D = T)



- Different values for the bandwidth are explored.
- **Good performance** of the approach compared with the real application.

Conclusions

- Provided probabilistic guarantees for soft real-time systems characterized by dependencies in the execution times.
- Introduced a Markovian representation of the system to model these dependencies.
- Adapted the techniques for **probabilistic guarantees** to the case of **MCTM**.
- Shown a technique for the **estimation** of the **MCTM parameters**.

Probabilistic Real-Time Guarantees: There is life beyond the i.i.d. assumption

Thanks.

Bernardo Villalba Frías br.villalbafrias@unitn.it