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Soft Real-Time Systems

* Hard real-time systems:
— Mature and effective methods.

— However, many recent real-time systems are not
hard real-time.

e Soft real-time systemes:

— Resilient to occasional and controlled timing
failures.
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Probabilistic Guarantees

* Performance specifications stated in probabilistic
terms:

— Associate each task with a probability of respecting the
deadline.

— Timing requirement to enforce: respect the deadline
with a given probability.

e State of the art: Numerical methods and analytic
bounds.

e Stochastic analysis based on the i.i.d. assumption.



Reservation-based scheduling

vation-Based Scheduling

L, .T...L :

e Resource Reservations:

— Scheduling parameters: Q% and T°.
— Executes Q° time units in every reservation period T°.
— Guarantees temporal isolation.

* CBS scheduler: SCHED DEADLINE.
 The probability of respecting the deadline is:
Pr {5] S T}



CBS as a Markov chain

* Model for the evolution of 0, :

V1 = C1

T
v; = max{0,v;_1 — ﬁQS} 1 @
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with c(c)=Pr{c; =}



CBS as a Markov chain

* Model for the evolution of 0, :

V1 = C1
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e State of the system:
Sn(j) = {v; = ™+ h}



CBS as a Markov chain

* Model for the evolution of 0, :

V1 = C1

T
v; = max{0,v;_1 — ﬁQS} 1 @

-3l
with c(c)=Pr{c; =}

e State of the system'
Sn(j) = {v; =™ + h}

* Define the probablllty
™ (j) = Pr{Sn(j)}



CBS as a Markov chain

* Dynamic of the workload modeled as a queue?:

1 Palopoli, L., Fontanelli, D., Abeni, L. and Villalba Frias, B., “An Analytical Solution for Probabilistic Guarantees of Reservation Based Soft
Real-Time Systems”, IEEE Transactions on Parallel and Distributed Systems, vol 27, no. 3, pp. 640 — 653, March 2016.



CBS as a Markov chain

* Dynamic of the workload modeled as a queue?:

T T a 2 N
C C C ........

* |Introduce the vector:
I1(5) = [mo(j§) m(j) m=2(j) -..]

1 Palopoli, L., Fontanelli, D., Abeni, L. and Villalba Frias, B., “An Analytical Solution for Probabilistic Guarantees of Reservation Based Soft
Real-Time Systems”, IEEE Transactions on Parallel and Distributed Systems, vol 27, no. 3, pp. 640 — 653, March 2016.



CBS as a Markov chain

* Dynamic of the workload modeled as a queue!:

T T a T
C C C ........

* |Introduce the vector:
I1(5) = [mo(j§) m(j) m=2(j) -..]

- : - o a, 0 0 0

* Probability evolution: [ @ @ - o 0 80
II(j) =1(; — )P 5

P = ap a1 Qa9 Qnp, 0 0 0

0O a a a ... a, 0 0
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1 Palopoli, L., Fontanelli, D., Abeni, L. and Villalba Frias, B., “An Analytical Solution for Probabilistic Guarantees of Reservation Based Soft
Real-Time Systems”, IEEE Transactions on Parallel and Distributed Systems, vol 27, no. 3, pp. 640 — 653, March 2016.




CBS as a Markov chain

* Dynamic of the workload modeled as a queue!:

T T a T
C C C ........

* |Introduce the vector:
() = [mo(j) m1(5) m2(j) ...

* Probability evolution: o
I(j) =1(j —1)P 5

P = U 0 0

e Steady state: B Z; Zf b o a, 0 0

ﬁ:hm H(]) O 0 a a as ... anp, O

J—0 : : . = s o’ "

1 Palopoli, L., Fontanelli, D., Abeni, L. and Villalba Frias, B., “An Analytical Solution for Probabilistic Guarantees of Reservation Based Soft
Real-Time Systems”, IEEE Transactions on Parallel and Distributed Systems, vol 27, no. 3, pp. 640 — 653, March 2016.




Results on i.i.d. execution times
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Results on non i.i.d. execution times
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A motivating example

Clean i Noisy

Scene

Model State
Transition

Extended use of randomized algorithms in robotics.
Path-following robot with image processing.
Possibly, different types of environment.

The robot will remain in one mode for a while.
Then, it will switch mode... continuously.

10



The modeling idea

* A Markov chain to model the “mode change”:

P1 P2
/\
\/
1-p,
S,

S1

11



The modeling idea

* A Markov chain to model the “mode change”:

V\l_@/
* The switching behavior introduces dependencies.
* Finite number of modes.

* If transitions are defined as a Markov Process.

 Model corresponds to a Markov Modulated Process.
 More precisely: a hidden Markov model.

11



The Markov Computation Time Model

A Markov Computation Time Model (MCTM) is
defined as the triple {M, P, ¢}
Mz{ml, YT mN}
P = (pa,b), ‘v’a,b e M
Pa,b = Pr {mj = b|mj_1 — CL}

C={Cp, :m; € M}

12



The Markov Computation Time Model

A Markov Computation Time Model (MCTM) is
defined as the triple {M, P, ¢}
M={mq, ..., my}
P = (pa,b), Va,be M
Pa b =Pr{m; =blm,;_1 =a}
C={Cp, :m; € M}
* Assumptions:

— Job’s execution time only depends on the current
mode.

— The “mode change” event is independent both from:

* The current computation workload.
* The execution time required by the previous job.

12



The Markov Computation Time Model

By modeling the dependencies as a
Markov system with a switching
behavior, it is possible to describe,
more precisely, the non i.i.d.
execution times.

13



Stochastic Analysis

* The new model of the system:

,
=g
O

[ID MCTM
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Stochastic Analysis

* The new model of the system:

14



Stochastic Analysis

* The new model of the system:

* Probability evolution:
I1(j) =11(j — )P
II = lim II(j)

J—00

14
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Stochastic Analysis

* Each individual block (P.) is given by:

P11 -Q&1e P12°02e ... P1,N CONe
_ | P21 Q1 P22-Q2e ... P2 N QNe
P =
| PN,1 - ®1,e PN2 QG2e ... PNN ' ONe|

with:

pa,b = Pr{mj = b|m]’_1 = (1,}
Qp p = Cb(Cmin + ]’L)



Stochastic Analysis

* Each individual block (P.) is given by:

B, =

with:

P11 -Q1e P1,2° 02
P21 01 e P22 02,

| PN,1 - ®1,e DPN,2 " Q2pe

P1,N " ON e
P2.N - ON e

- DPN,N " QN |

pa,b = Pr{mj = b|m]’_1 = (1,}

Qp p = Cb(Cmin + ]’L)

* Numerically solved:

— Cyclic or Logarithmic Reduction.



Stochastic Analysis

* Each individual block (P.) is given by:

P11 -Q&1e P12°02e ... P1,N CONe
| P21 01e P22°QG2¢ ... P2 N QNge
P =
| PN,1 - ®1,e PN2 QG2e ... PNN ' ONe|

with:

pa,b = Pr{mj = b|m]’_1 = (1,}
Qp p = Cb(Cmin + ]’L)

* Numerically solved:
— Cyclic or Logarithmic Reduction.

e Steady state distribution of the response time:
lim Pr{d; < D}

71—r00
16



Stochastic Analysis

By presenting the MCTM as a
QBDP and using the available
numeric solutions, it is possible to
obtain the probability of
respecting the deadline for the
proposed model.

17



Parameter Identification

Parameter Identification

plo)
N Random —>(0) | 5
Generator [ C™'y = B i
Pass/Fail
> | |dentification —|§—> Clasification |——>=| Sub-sequence ____ 5| Independence /
| Execution Test >
Observed | Times
Execution [——F >
Times |
I

* Identify the values of {M, P, C}
* Solved by the Baum-Welch algorithm:

— |terative estimation of the parameters.

— Convergence to the maximum likelihood matrices.

18



Parameter Validation

Parameter Validation

plo) | |
Random > |

I Execution Test I
Observed Times

Execution |—> |
Times |
|

Generator _>C() —>| I
Ip ;
o ass/Fail
> | Identification |—4-5| Clasification |— Sub-sequence | > | Independence

Validate the estimated values of {M, P, C}
Solved by the Viterbi algorithm:

— Generates a sequence of hidden states.

— Obtains N sub-sequences of execution times.

Perform a numerical test for independence.

19



Results on non i.i.d. execution times
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Parameter Estimation

By applying standard identification
techniques on hidden Markov
models, it is possible to estimate
the parameters describing the
Markov Computation Time Model.

21



Experimental Setup

e - — 5 -

Robotic vision application.
Two operating conditions.

100 sequences of
observations.

18400 execution times per
sequence.

WandBoard running
Ubuntu.

Linux Kernel 4.8.1

22



Parameter Estimation

* Execution times B
09
obtained from image 30| 1 osl
processing algorithm. |

0.6t
05¢
i

Autocorrelation

Computation time [ms]

e Strong autocorrelation. oa [l
. 0.3 ”ﬁ.‘.

* Test for independence: o.2 {117
Runs of “above and 1] |
below the mean” with 01 o

Lag

0.05 significance level.

m p-value (>0.05) hypothesis

-37.3271 0.0000 Rejected

40
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Parameter Estimation

Autocorrelation
© © o ©
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Applying the estimation technique for different input data.
Consistently identified a 5-modes MCTM.

Test for independence: Runs of “above and below the mean” with
0.05 significance level.

| Mode | zstatistic | p-value (>0.05) | hypothesis

1 -1.3929 0.0818 Accepted
2 -1.1932 0.1164 Accepted
3 -1.1088 0.1338 Accepted
4 -1.5830 0.0567 Accepted
5 -0.6522 0.2571 Accepted 24



Fixed bandwidth (16%)

Scheduling parameters: 1
— T =100 ms. 09 g -

— (T, Q%) = (25 ms, 4 ms). ol /ﬁ

Probability of respecting  Zos

the deadline: 5 05|
# of jobs respecting the deadline gz:

# Of jObS 0:2 - = MCTM - 5 States
Overestimation when 0.1 1, shpostnsyc| |

100 150 200 250 300
Relative deadline [ms]

considering the i.i.d. model. 0

Good match: MCTM vs.
Real application.
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Fixed bandwidth (70%)

Scheduling parameters: 1
— T=200 ms. 0.9 f
— (T, Q%) = (50 ms, 35 ms). zj
Probability of respecting  £.s!
the deadline: 205
# of jobs respecting the deadline s
03¢
# of jobs sl
' - = MCTM - 6 States
Overestimation when 0.1 il 18 ok anon] |

considering the i.i.d. model %100 200 300 400 500 600

Good match. MCTM VS. Relative deadline [ms]
Real application.
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Fixed deadline (D =T)

i = = MCTM - 5 States| | | - = MCTM - 6 States| |
0.1 —— Measured 0.1 —— Measured
0 : : : g 0 + : . 5 :
10 20 30 40 50 60 50 60 70 80 90 100
Bandwidth [%] Bandwidth [%]

e Different values for the bandwidth are explored.

 Good performance of the approach compared with
the real application.
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Conclusions

Provided probabilistic guarantees for soft
real-time systems characterized by
dependencies in the execution times.

Introduced a Markovian representation of the
system to model these dependencies.

Adapted the techniques for probabilistic
guarantees to the case of MCTM.

Shown a technique for the estimation of the
MCTM parameters.

28



Probabilistic Real-Time Guarantees:
There is life beyond the i.i.d. assumption

Thanks.

Bernardo Villalba Frias
br.villalbafrias@unitn.it
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