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Can beprogrammedto raise an
Interrupt at a desired time
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Job Releases
Tasks can be woken up periodically using timers

Budget Enforcement
Schedulers use timers to prevent budget overruns

SelfSuspensions

Tasks can use POSI¥ck nanosledpto suspend themselvej;
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Assumptions

Fixedpriority scheduling

‘ Uniprocessor \ ‘ Partitioned Multiprocessor \
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(LP task is woken up)




TimeFrinterrupt Interference

Unnecessary
interference




Why Does Interference Occur?

[ AV trh@@ subsystem




Why Does Interference Occur?

[ AV trh@@ subsystem

Multiplexes many
software timers on a
single hardware timer
using a@ime-ordered

red-black tree




Why Does Interference Occur?

[ AV trh@@ subsystem

Earliest expiring
timer is programmed
Into hardware




Why Does Interference Occur?

[ AV trh@@ subsystem

But, earliest timer
could belong to the
lowest-priority task!

Earliest expiring
timer is programmed
Into hardware




Why Does Interference Occur?

Mayinterrupt a [ A Y trénfed subsystem
higherpriority task!

But, earliest timer
could belong to the
lowest-priority task!

Earliest expiring
timer is programmed
Into hardware




Why Does Interference Occur?

Mayinterrupt a [ A Y trénfed subsystem
higherprior

Key Problem

hrtimers does not take into
account the priority of the process
that created the timer

But, earlies
could belo
lowest-prio

Earliest expiring
timer is programmed
Into hardware
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Timer processing
(interrupt top-half)
Is safely deferred
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1. Find and reprogram
the earliest timer with
LINJA 2 NR § &
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How is TimerShield Implementec

2. Process expired timers
of the highest priority
(lower priority ones can

still be deferred)

1. Find and reprogram
the earliest timer with
LJNJ\ZNJ\Gé\% | t

o

These operations need to be
iInexpensive to work well in practice
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1: Find the earliest timeat each priority level

2: Among these, find thearliest timerin the priority
range fcurr_task prig max_system_pri¢p

A Range Minimum
Query! (RMQ)



1: Replicating Redlack Trees

Priority Level 1 2 3 X X 140
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Priority Level 1 2 3 X X 140

NULL ‘
’

Earliest timer for each
priority level
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2. Range Minimum Querg Segment Tree |

min [0 3] Leaf nodes are the

earliest timers for

each priority level
/ \ min [2, 3]

\ / \
© © O
[1] [2] [3]

min [0,1]

[0]
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2. Range Minimum Querg Segment Tree

min [0, 3]
N

Provides an efficient)(log N)mechanism tdind the earliest
timer inthe priority range
[curr_task prig max_sys_pridp

N /N
© © O
[1] [2] [3]

[0]

55



2. Range Minimum Querg Segment Tree

min [0, 3]
N

Provides an efficientD(log N)mechanism to find the earlie
timer in the priority range
[curr_task prig max_sys pri¢

N = number of (fixed) Constant time
priority levels ) ‘ operation!

[O] [1] [2] [3]
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TimerShield Implementation

Further details in the paper!

Opensource implementation at
https://people.mpisws.org/~bbb/papers/details/rtas17p




Talk Overview




Evaluation

Prototyped In
PREEMPT_ RT

Intel Corel5
4 x 3.2Ghz

ARM CortexA53
4 x 1.2Ghz

59



Evaluation

Prototyped In
PREEMPT_ RT

Intel Corel5
4 x 3.2Ghz

& o
s
44 ‘ -,
g VL \

ARM CortexA53
4 x 1.2Ghz

Py 7 S

4 Detalls in paper

/

™

7

60



Evaluation

How effective i imerShieldat isolating higkpriority
tasks fromlow-priority timer interrupts?

How is the contexswitch duration affected? \
| How costly are the neueueingdata structure® \
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HP Task Response Time

1 KHz control loop with
approx. 206s
computation time

We measured the response time ohmyh-priority task with
varying numberof low-priority, timer-using tasks

cyclictesttasks
which periodically call
clock _nanosleqp

From 1 to 100 LP
cyclictesttasks
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How Bad Can It Get?

Linux (and POSIX) provide protection, and
specifieno upper limiton timer creation
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How Bad Can It Get?

Linux (and POSIX) proviade protection, and

specifieno upper limiton timer creation

We measured the response time of a hgority task witha
single, unprivilegedjserspace task that spawned timers
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