TimerShield

Protecting HigHPriority Tasks from
Low-Priority Timerinterference

PratyushPatel-2, ManoharVanga, BjornBrandenburg
IMPESWS?2Carnegie Mellon University
MAX PLANCK INSTITUTE RTAS 2017

FOR SOFTWARE SYSTEMS April 18, 2017
Kaiserslautern, Germany Pittsburgh, USA

This Paper

This Paper

hrtimers

PREEMPT_RT

This Paper

hrtimers

4

Default highresolution
timer subsystem

PREEMPT_RT

This Paper

hrtimers

\

Default highresolution
timer subsystem

v

MPT_RT
Unnecessaryow- PREE -

priority timer-interrupt
Interference

This Paper

hrtimers TimerShield

\

Default highresolution
timer subsystem

v

Unnecessaryow- PREEMPT_RT

priority timer-interrupt
Interference

This Paper

TimerShield
\ 4

A dropin replacement
for hrtimers

hrtimers

\

Default highresolution
timer subsystem

v

PT RT
Unnecessaryow- PREEMPT_

priority timer-interrupt
Interference

This Paper

TimerShield
v

hrtimers

\/

Default highresolution
timer subsystem

A dropin replacement
for hrtimers

¥

PT RT
Unnecessaryow- PREEMPT_

priority timer-interrupt ARM intel

Interference

This Paper

TimerShield
v

hrtimers

\/

Default highresolution A dropin replacement
timer subsystem for hrtimers

Unnecessaryow- PREEMPT_RT Eliminateslow-priority
priority timer-interrupt ARM :i’nt er) timer-interrupt

Interference Interference

Talk Overview

Talk Overview

HighResolution Timers

Core l Core 2

Timer Timer

Core 3 Core 4

Timer Timer

HighResolution Timers

Corelocaltimers withcycle precision

Core 1l Core 2
Timer Timer
Core 3 Core 4
Timer Timer

HighResolution Timers

Corelocaltimers withcycle precision

Core 1l Core 2
Timer Timer
Core 3 Core 4
Timer Timer

Can beprogrammedto raise an
Interrupt at a desired time

Timers In Realime OSes

Timers In Realime OSes

Job Releases
Tasks can be woken up periodically using timers

Timers In Realime OSes

Job Releases
Tasks can be woken up periodically using timers

Budget Enforcement
Schedulers use timers to prevent budget overruns

Timers In Realime OSes

Job Releases
Tasks can be woken up periodically using timers

Budget Enforcement
Schedulers use timers to prevent budget overruns

SelfSuspensions

Tasks can use POSI¥ck nanosledpto suspend themselvej;

18

Assumptions

Fixedpriority scheduling

‘ Uniprocessor \ ‘ Partitioned Multiprocessor \

19

TimekrInterrupt Interference

TimekrInterrupt Interference
Callsclock nanosleqs)

LP
0 2 4 6 8 10 12

Low-Priority Task

TimekrInterrupt Interference
Callsclock nanosleqs)

LP
0 2 4 6 8 10 12

Low-Priority Task

Timerhardware is
programmedto fire at the
specified time

TimeFrinterrupt Interference

Highpriority task
IS released

TimeFrinterrupt Interference

At t = 6, timer hardwar
fires aninterrupt

TimeFrinterrupt Interference

HP is preempted to
service the interrupt
(LP task is woken up)

At t = 6, timer hardwar
fires aninterrupt

TimeFrinterrupt Interference

HP is preempted to
service the interrupt HP task resumes
(LP task is woken up)

TimeFrinterrupt Interference

Unnecessary
interference

Why Does Interference Occur?

[AV trh@@ subsystem

Why Does Interference Occur?

[AV trh@@ subsystem

Multiplexes many
software timers on a
single hardware timer
using a@ime-ordered

red-black tree

Why Does Interference Occur?

[AV trh@@ subsystem

Earliest expiring
timer is programmed
Into hardware

Why Does Interference Occur?

[AV trh@@ subsystem

But, earliest timer
could belong to the
lowest-priority task!

Earliest expiring
timer is programmed
Into hardware

Why Does Interference Occur?

Mayinterrupt a [A Y trénfed subsystem
higherpriority task!

But, earliest timer
could belong to the
lowest-priority task!

Earliest expiring
timer is programmed
Into hardware

Why Does Interference Occur?

Mayinterrupt a [A Y trénfed subsystem
higherprior

Key Problem

hrtimers does not take into
account the priority of the process
that created the timer

But, earlies
could belo
lowest-prio

Earliest expiring
timer is programmed
Into hardware

Talk Overview

How Does TimerShield Work?

How Does TimerShield Work?

How Does TimerShield Work?

Mask all the
low-priority timers

How Does TimerShield Work?

Mask all the
low-priority timers

How Does TimerShield Work?

Mask all the Process the expired
low-priority timers low-priority timers

How Does TimerShield Work?

Mask all the Process the expired
low-priority timers low-priority timers

Timer processing
shifted

How Does TimerShield Work?

Timer processing
(interrupt top-half)
Is safely deferred

How is TimerShield Implementec

Timer inherits
task priority

How is TimerShield Implementec

1. Find and reprogram
the earliest timer with

priority XxHP \

0 i 2 4 6 8 10 12

How is TimerShield Implementec

1. Find and reprogram
the earliest timer with
LJNJ\QNJ\G@Q | t

How is TimerShield Implementec

2. Process expired timers
of the highest priority
(lower priority ones car

still be deferred)

1. Find and reprogram
the earliest timer with
LINJA 2 NR § &

45

How is TimerShield Implementec

2. Process expired timers
of the highest priority
(lower priority ones car

still be deferred)

1. Find and reprogram
the earliest timer with
LINJA 2 NR § &

How is TimerShield Implementec

2. Process expired timers
of the highest priority
(lower priority ones can

still be deferred)

1. Find and reprogram
the earliest timer with
LJNJ\ZNJ\Gé\% | t

o

These operations need to be
iInexpensive to work well in practice

47

Priority-Based Earliest Timer

1: Find the earliest timeat each priority level

Priority-Based Earliest Timer

1: Findthe earliest timerat each priority level

2: Among these, find the earliest timer in the priority
range furr_task prigmax_system_prip

Priority-Based Earliest Timer

1: Find the earliest timeat each priority level

2: Among these, find thearliest timerin the priority
range fcurr_task prig max_system_pri¢p

A Range Minimum
Query! (RMQ)

1: Replicating Redlack Trees

Priority Level 1 2 3 X X 140

NULL ‘
’

51

1: Replicating Redlack Trees

Priority Level 1 2 3 X X 140

NULL ‘
’

Earliest timer for each
priority level

2. Range Minimum Querg Segment Tree |

min [O 3]

/ \ min [2, 3]

\ /\
© © O

[0] [1] [2] [3]

min [0,1]

2. Range Minimum Querg Segment Tree |

min [0 3] Leaf nodes are the

earliest timers for

each priority level
/ \ min [2, 3]

\ / \
© © O
[1] [2] [3]

min [0,1]

[0]

54

2. Range Minimum Querg Segment Tree

min [0, 3]
N

Provides an efficient)(log N)mechanism tdind the earliest
timer inthe priority range
[curr_task prig max_sys_pridp

N /N
© © O
[1] [2] [3]

[0]

55

2. Range Minimum Querg Segment Tree

min [0, 3]
N

Provides an efficientD(log N)mechanism to find the earlie
timer in the priority range
[curr_task prig max_sys pri¢

N = number of (fixed) Constant time
priority levels) ‘ operation!

[O] [1] [2] [3]

56

TimerShield Implementation

Further details in the paper!

Opensource implementation at
https://people.mpisws.org/~bbb/papers/details/rtas17p

Talk Overview

Evaluation

Prototyped In
PREEMPT_ RT

Intel Corel5
4 x 3.2Ghz

ARM CortexA53
4 x 1.2Ghz

59

Evaluation

Prototyped In
PREEMPT_ RT

Intel Corel5
4 x 3.2Ghz

& o
s
44 ‘ -,
g VL \

ARM CortexA53
4 x 1.2Ghz

Py 7 S

4 Detalls in paper

/

™

7

60

Evaluation

How effective i imerShieldat isolating higkpriority
tasks fromlow-priority timer interrupts?

How is the contexswitch duration affected? \
| How costly are the neueueingdata structure® \

61

Evaluation

How effective i imerShieldat isolating higkpriority
tasks fromlow-priority timer interrupts?

| How is the contexswitch duration affected? \
| How costly are the newueueingdata structure® \

62

HP Task Response Time

We measured the response time of a hgiority task with
varying number of lowpriority, timer-using tasks

HP Task Response Time

1 KHz control loop with
approx. 206s
computation time

We measured the response time ohmyh-priority task with
varying number of lowpriority, timer-using tasks

Taskset parameters based on S. Kramer, D. Ziegenbein, and A. Hamann,
AReal world automotive benchmark for

f

r

e

HP Task Response Time

1 KHz control loop with
approx. 206s
computation time

We measured the response time ohmyh-priority task with
varying number ofow-priority, timer-using tasks

cyclictesttasks
which periodically call
clock _nanosleqp

Taskset parameters based on S. Kramer, D. Ziegenbein, and A. Hamann,
AReal world automotive benchmark for

f

r

e

HP Task Response Time

1 KHz control loop with
approx. 206s
computation time

We measured the response time ohmyh-priority task with
varying numberof low-priority, timer-using tasks

cyclictesttasks
which periodically call
clock _nanosleqp

From 1 to 100 LP
cyclictesttasks

Taskset parameters based on S. Kramer, D. Ziegenbein, and A. Hamann,
AReal world automotive benchmark for

f

r

e

CDF

HP Tas_k Response Time

1.0
0.6

02bL ... O AT e, TRTP

| | |
210 215 220 225 230 235 240
Response Time (Iin us)

67

CDF

1.0

-

Means 60% of the

0.6

o4k

0.2 -

I
&
\rl/ measured samples have a
I
I
[
I

HP Task Response Time

response time¥@14.8us -

215 220 225 230 235
Response Time (in us)

240

CDF

1.0

0.8 b

0.6

0 S SR

02t .1 RS

r

1 LPcyclictest

00k - .”}””_”m””m””m

Response Timertimers

215

220 225 230

Response Time (in us)

240

69

CDF

1.0

Response Tlmdwrtlmers

0.6

0.4

0.2

o0k -

2

+ + 100 LReyclictests

0y 1 LPcyclictest

10 215 220 225 230 235
Response Time (in us)

70

CDF

1.0

i ‘ .)
/100 LReyclictests Lgh unpredictability

0.6

oal

0.2 -

o0k -

__—_.—_,-'-—

Response Tlmdwrtlmers

;

Long tail,

) 1 LPecyclictest

210

Response Time (in us)

215 220 225 230

s
235

240

CDF

Response TimeTimerSlhieId

1.

0.6

0.2

o0k -

08b]

210

215 220 225 230 235
Response Time (in us)

240

CDF

1.

0.6

0.4k T

0.2

o0k -

Response TimeTimerSlhieId

08b]

100 LP timers remains
consistent!

Response timavith 1,50 or -

210

215

R RSP |
220 225 230 235

Response Time (in us)

240

CDF

Response TlmeTlmerShleId

1.0
Sl|ght shift due t@ache

oglb ... T
of low-priority tasks

0.6F

0.4 Response timevith 1,50 0or
100 LP timers remains

0.2 consistentt |

0.0

- effectsof increasing number.---.-. .

210 215 220 225 230 235
Response Time (in us)

240

How Bad Can It Get?

Linux (and POSIX) provide protection, and
specifieno upper limiton timer creation

75

How Bad Can It Get?

Linux (and POSIX) provide protection, and

specifieno upper limiton timer creation

We measured the response time of a hgority task witha
single, unprivilegedjserspace task that spawned timers

How Bad Can It Get?

Linux (and POSIX) proviade protection, and

specifieno upper limiton timer creation

We measured the response time of a hgority task witha
single, unprivilegedjserspace task that spawned timers

A A Y 3 tindfyARE Q &

Timehrtimers

Idle syste_m ESDOnSe

0 -

I

0.6

CDF

0.2 -

D0F = = == ..

I
!

#

100 LP timers ;!

oo -
b r =]

- '
- : -

: ’ -
1000 LP timers

F

! ——

230 240
Response Time (in us)

260

78

CDF

Response Tlmdwrtlmers

1.0 - _ R —— iemmmme
, .
Ug_l: Ne_arlyﬂ_rSus (22%) respons i
:) time increasewith 1000
0.6 1 o low-priority timers
: .
I L ,
N ﬁ" /
;) ’
0.2k gt e O
I Fa
] . #..r
ﬂ.ﬂ | o o L | L . | i
210 220 230 240 250 260

Response Time (in us)

