Memory & Storage Architecture Lab.

@ Seoul National University

QoS-aware
Flash Memory Controller

Bryan S. Kim and Sang Lyul Min

Seoul National University

Flash memory ubiquity

NAND flash
memory
Flash-based
storage
Devices and
applications Qg : =
PP SuseEmesaEso
T e ol
Eg-nrﬂmr:-m
e s

* Images from various sources via google search

Memory & Storage Architecture Lab.

@ Seoul National University

Background

Flash memory eccentricities

Hello World RTAS 2016

nHel | o|l0

nWor |l d|o

ARTASO

Nn20160

Memory & Storage Architecture Lab.
@ Seoul National University Backg round

Flash memory eccentricities

Hello World RTAS 2017

Update map

AnHel | o6 —> nN20170
AWor | dle
ANRTASO]|

Memory & Storage Architecture Lab.
@ Seoul National University Background

|

Flash memory eccentricities

Hello World RTAS 2017

AnHel |l o nN20170

nWorl d

nHel | ofcC

AWor | dic

ARTASO

ARTASO

Copy valid data

Memory & Storage Architecture Lab.

@ Seoul National University

Background

Flash memory eccentricities

Hello World RTAS 2017

Erase a block

—> nRn20170
> AHel | 0|0
> AWor |l d|o
> ARNRTASO

Memory & Storage Architecture Lab.

@ Seoul National University

Background

Flash translation layer

Garbage

Host request collection

handling

- g
T~

Mapping table

_— management

scrubbing = T—

Error /
. Sudden
handling
power off
\ recovery
Bad block Wear-
management leveling

Memory & Storage Architecture Lab.

@ Seoul National University

Background

Performance of flash storage

1.2
I

D5 MLC

D& MLC

SSD Performance States - Normalized IOPS

—D1MLC =—D2MLC -=D3MLC =—D4MLC

D7 SLC ~=——DBSLC

FOB

10

Transition

Normalized I0PS

Steady State
(desirable test range)

0 100

300
Time (Minutes)

400

700

Memory & Storage Architecture Lab.

@ Seoul National University

Background

* Graph from SNIA solid state storage performance test specification

Challenge 1: scheduling

Host req #0: Prog(chip 0, block 4, page 18)

Mapping table management I Host req #1: Prog(chip 1, block 2, page 17)

Host req #2: Read(chip 0, block 0, page 46)
Host request
Read scrubbing =), h an d I | N g

Wear-leveling ==

Error handling) G ar b ag € a
collection

Bad block management == GCreq #0: Read(chip 0, block 1, page 55)
GCreq #1: Read(chip 0, block 1, page 78)

Flash memory

subsystem

Sudden power off recovery

Memory & Storage Architecture Lab.
@ Seoul National University

Challenge 2: changes in importance

Host req #0: Prog(chip 0, block 4, page 18)

Mapping table management l Host req #1: Prog(chip 1, block 2, page 17)

Host req #2: Read(chip 0, block 0, page 46)
HOSt req u eSt Host req #3: Read(chip 1, block 6, page 03)
Read scrubbing =) h an d I | N g

Wear-leveling ==

Error handling) G ar b ag e /

collection

Bad block management s GCreq #0: Read(chip 0, block 1, page 55)

Flash memory
subsystem

Sudden power off recovery

Memory & Storage Architecture Lab.
@ Seoul National University

Challenge 2: changes in importance

Host req #0: Prog(chip 0, block 4, page 18)

Mapping table management I Host req #1: Prog(chip 1, block 2, page 17)

Host request
Read scrubbing ") h an d I | N g

Wear-leveling ==

Flash memory

Error handling) SUbSyStem
Garbage
collection
Bad block management s GCreq #0: Read(chip 0, block 1, page 55)
GCreq #1: Read(chip 0, block 1, page 78)
GCreq #2: Read(chip 0, block 1, page 99)
Sudden power off recovery GCreq #3: Erase(chip 0, block 1)

Memory & Storage Architecture Lab.
@ Seoul National University

Challenge 3: load balancing

—

Mapping table management

Flash memory
subsystem
Host request rog

Readserubbing === N andlin g Flash

chip

Wear-leveling ==

Flash
chip

Error handling == Garbage Read Read Read Read Read Read Read

collection

Bad block management we=

Flash
chip

Flash

chip

Sudden power off recovery

Memory & Storage Architecture Lab.
@ Seoul National University

QoS-aware flash controller

Fair share scheduler

Host interface layer

Non binding request handler

QoS-aware flash controller

Block allocation

Host request
handler

Low-leve
flash controller

(Map, # of free
blocks, block m=]= = '="="= - {
list, utilization,

Fair share
scheduler

Dynamic share
allocator

Flash channel
Flash channel

Low-leve
flash controller

Update | collector

Block alocation

Memory & Storage Architecture Lab.

@ Seoul National University

Fair share scheduler

Fair share scheduler

Host interface layer

A Keep track of the state of resources
A Select request to service based on share
A Interface with the low - level controller

QoS-aware flash controller

Block allocation

Host request
Update | handler

Non-binding Wait queues

request handler

I Status

Low-leve

(Map, # of free
blocks, block
list, utilization,

flash controller Flash channel
Dynamic share Fair share Status
allocator scheduler

Low-leve

. Garbage
Update collector

Block alocation

Memory & Storage Architecture Lab.

@ Seoul National University

flash controller Flash channel

Non-binding
request handler

Fair share scheduler

Fair share scheduler

A Keep track of the state of resources

A Select request to service based on share
A Interface with the low - level controller

40% share

Host progress
@ Ous

7 100us

GC progress
60% share

Memory & Storage Architecture Lab.
@ Seoul National University

Fair share scheduler

Fair share scheduler
A Keep track of the state of resources
A Select request to service based on share

A Interface with the low - level controller
Ous+100us/40%
40% share = 250us
___ .
Host progress
@ Ous
7 100us

GC progress
60% share

Memory & Storage Architecture Lab.
@ Seoul National University

Fair share scheduler

Fair share scheduler
A Keep track of the state of resources
A Select request to service based on share

A Interface with the low - level controller
Ous+100us/40%
40% share = 250us
___ .
Host progress
@ Ous @ 150us

7 100us

@ 150us
GC progress

60% share

Memory & Storage Architecture Lab.
@ Seoul National University

Fair share scheduler

Fair share scheduler
A Keep track of the state of resources
A Select request to service based on share

A Interface with the low - level controller
Ous+100us/40%
40% share = 250us
___ .
Host progress
@ Ous @ 150us
7 100us 240us

Flash chip Read GC program >

GC progress
60% share

150us+240us/60%
= 550us

Memory & Storage Architecture Lab.

@ Seoul National University

Fair share scheduler

Fair share scheduler
A Keep track of the state of resources
A Select request to service based on share

A Interface with the low - level controller
390us+100us/40%
40% share = 640us
___ ..
Host progress
@ Ous @ 150us
7 100us 240us 100us

Flash chip GC program

GC progress
60% share

150us+240us/60%
= 550us

Memory & Storage Architecture Lab.

@ Seoul National University

Dynamic share allocator

Host interface layer

QoS-aware flash controller

Low-leve
flash controller

Block allocation
Non-binding |,/ \Watqueues
Host request request handler
Upgate » handler ‘ ‘ ‘ ‘ | Status

cm

(It\:llgg’(# ([))];(I:;Ee Dynamic share ‘i Fair share Status

. .5'. . allocator scheduler

list, utilization, lcm

Low-leve
flash controller

Flash c

hannel

Non-binding
request handler

Update !

collector

Block alocation

Memory & Storage Architecture Lab.

@ Seoul National University

Flash ch

annel

Dynamic share allocator

Dynamic share allocator
A # of free blocks as representation of state
A Adjust share to control # of free blocks

Target #
of free blocks Dynamic Share #r é)é
Allocator blocks

Host share GC share

Host requests

Scheduler =

Scheduled requests

GC requests

Memory & Storage Architecture Lab.

@ Seoul National University

Non-binding request handler

Non binding request handler
A Estimate queue delay for each chip
A Re assign non - binding requests to a new chip

A Notify FTL task of the selection

Host interface layer

QoS-aware flash controller

Block allocation

Non-binding - Wait queues

Host request
Update | handler

I Status

cm
e Low-level
f f 1 flash controller Flash channel
(It\)/ll Z‘Ek: (l:))I ocr:ﬁe I_ #freeblocks _ﬁ Dynamic share = Fair share |
list, utilization, | | allocator scheduler
L ook Low-level
| up flash controller Flash channel

. Garbage
Update collector

Block alocation

Memory & Storage Architecture Lab.

@ Seoul National University

Non-binding request handler

Non binding request handler
A Estimate queue delay for each chip
A Re assign non - binding requests to a new chip

A Notify FTL task of the selection

Host: 80%
GC: 20%

Host program

Memory & Storage Architecture Lab.

@ Seoul National University

Evaluation methodology

A Storage system configuration

A FTL tasks: host request handling & garbage collection
A Generate a stream of asynchronous flash memory requests
A Inter-arrival time for requests to model processing overhead for tasks

A FTL with 4KB mapping granularity
A Garbage collection with greed policy (select block with minimum # of valid data)
A ~14% over-provisioning factor

Memory & Storage Architecture Lab. _
@ Seoul National University Evaluation

Evaluation methodology

A Storage system configuration

A FTL tasks: host request handling & garbage collection
A Generate a stream of asynchronous flash memory requests
A Inter-arrival time for requests to model processing overhead for tasks

A FTL with 4KB mapping granularity
A Garbage collection with greed policy (select block with minimum # of valid data)
A ~14% over-provisioning factor

A Workload configuration

A lIssue rate: 5K IOPS
A Such that both host request handling & garbage collection run concurrently
A While not causing requests to queue up unboundedly

A Duration: 1 hour simulation time (up to 18M 10s)

Memory & Storage Architecture Lab. _
@ Seoul National University Evaluation

Experiment 1: Establishing baseline

QoS unaware . schedule in order of arrival
Throttling . limit bandwidth use
QoS aware (FSS) : 50:50 share

Memory & Storage Architecture Lab. _
@ Seoul National University Evaluation

Experiment 1. Establishing baseline

QoS unaware : schedule in order of arrival
Throttling . limit bandwidth use
QoS aware (FSS) : 50:50 share

5300 1.2
’ e ® o oo 99.9%: <47ms
5200 . 1
— >
0g 087, ¢Vgn,
*‘ =
a 5100 508
9 0 ———-
: = 7 8 —_—’-—
35000 | 06 A\ —e——=""
o - S _ _)
-g = - % —‘—'—
o - O . T & SR : S 7 @10ms: 56%
‘E 4900 | o < M= g 04 7
: 4 S S
L) P8 x % ° ® ¢ o8 ©®) 4
[X € [] Y ° o0 ° [}
4800 02 1
[
[
!
4700 0
0 500 1000 1500 2000 2500 3000 3500 500 2500 4500 6500 8500 10500 12500 14500 16500 18500
Time (sec) Response time (us)
©® QoS-unaware = = «Q0S-unaware

Memory & Storage Architecture Lab. _
@ Seoul National University Evaluation

Throuhgput (IOPS)

Experiment 1: Establishing baseline

5300

5200

4800

Memory & Storage Architecture Lab. _
@ Seoul National University Evaluation

QoS unaware . schedule in order of arrival
Throttling . limit bandwidth use
QoS aware (FSS) : 50:50 share

1.2
99.9%: <28ms
S I H———— 1
—____ﬁ
-

2 /""
508 PL s
s @10ms: 74@9¢
° PR
=06 o’
= o’
T ¢-"‘—’
S g @10ms: 56%
3 J

!

!

0.2
!
!
!
0 4
500 1000 1500 2000 2500 3000 3500 500 2500 4500 6500 8500 10500 12500 14500 16500 18500
Time (sec) Response time (us)
QoS-unaware A SW throttling QoS-unaware = == eS\V throttling

Experiment 1: Establishing baseline

QoS unaware . schedule in order of arrival

Throttling . limit bandwidth use

QoS aware (FSS) : 50:50 share
99.9%: <3.2ms @10ms: 100%
O

@10ms: 74%

@10ms: 56%

Memory & Storage Architecture Lab. _
@ Seoul National University Evaluation

