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Flash memory ubiquity
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Flash memory eccentricities

Hello World RTAS 2016
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Flash memory eccentricities

Hello World RTAS 2017

*Update map*
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Flash memory eccentricities

Hello World RTAS 2017
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Flash memory eccentricities

Hello World RTAS 2017

*Erase a block*
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Flash translation layer
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Performance of flash storage
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Challenge 1: scheduling

Host req #0: Prog(chip 0, block 4, page 18)

Mapping table management I Host req #1: Prog(chip 1, block 2, page 17)

Host req #2: Read(chip 0, block 0, page 46)
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Challenge 2: changes in importance

Host req #0: Prog(chip 0, block 4, page 18)

Mapping table management l Host req #1: Prog(chip 1, block 2, page 17)

Host req #2: Read(chip 0, block 0, page 46)
HOSt req u eSt Host req #3: Read(chip 1, block 6, page 03)
Read scrubbing =) h an d I | N g
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Challenge 2: changes in importance

Host req #0: Prog(chip 0, block 4, page 18)

Mapping table management I Host req #1: Prog(chip 1, block 2, page 17)

Host request
Read scrubbing ") h an d I | N g

Wear-leveling ==

Flash memory

Error handling ) SUbSyStem
Garbage
collection
Bad block management s GCreq #0: Read(chip 0, block 1, page 55)
GCreq #1: Read(chip 0, block 1, page 78)
GCreq #2: Read(chip 0, block 1, page 99)
Sudden power off recovery GCreq #3: Erase(chip 0, block 1)
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Challenge 3: load balancing
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QoS-aware flash controller

Fair share scheduler

Host interface layer

Non binding request handler
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Fair share scheduler

Fair share scheduler

Host interface layer

A Keep track of the state of resources
A Select request to service based on share
A Interface with the low - level controller

QoS-aware flash controller

Block allocation
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Fair share scheduler

Fair share scheduler

A Keep track of the state of resources

A Select request to service based on share
A Interface with the low - level controller

40% share

Host progress
@ Ous

7 100us

GC progress
60% share
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Fair share scheduler

Fair share scheduler
A Keep track of the state of resources
A Select request to service based on share

A Interface with the low - level controller
Ous+100us/40%
40% share = 250us
_________________________________________ .
Host progress
@ Ous
7 100us

GC progress
60% share
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Fair share scheduler

Fair share scheduler
A Keep track of the state of resources
A Select request to service based on share

A Interface with the low - level controller
Ous+100us/40%
40% share = 250us
_________________________________________ .
Host progress
@ Ous @ 150us
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@ 150us
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Fair share scheduler

Fair share scheduler
A Keep track of the state of resources
A Select request to service based on share

A Interface with the low - level controller
Ous+100us/40%
40% share = 250us
_________________________________________ .
Host progress
@ Ous @ 150us
7 100us 240us

Flash chip Read GC program >

GC progress
60% share

150us+240us/60%
= 550us
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Fair share scheduler

Fair share scheduler
A Keep track of the state of resources
A Select request to service based on share

A Interface with the low - level controller
390us+100us/40%
40% share = 640us
_____________________________________________________________________________ ..
Host progress
@ Ous @ 150us
7 100us 240us 100us

Flash chip GC program

GC progress
60% share

150us+240us/60%
= 550us
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Dynamic share allocator

Host interface layer

QoS-aware flash controller

Low-leve
flash controller

Block allocation
Non-binding |,/ \Watqueues
Host request request handler
Upgate » handler ‘ ‘ ‘ ‘ | Status

cm

(It\:llgg’(# ([))];(I:;Ee Dynamic share ‘i Fair share Status

. .5'. . allocator scheduler

list, utilization, lcm

Low-leve
flash controller

Flash c

hannel

Non-binding
request handler

Update !

collector

Block alocation

Memory & Storage Architecture Lab.

@ Seoul National University

Flash ch

annel



Dynamic share allocator

Dynamic share allocator
A # of free blocks as representation of state
A Adjust share to control # of free blocks
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of free blocks Dynamic Share #r é)é
Allocator blocks
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Non-binding request handler

Non binding request handler
A Estimate queue delay for each chip
A Re assign non - binding requests to a new chip

A Notify FTL task of the selection

Host interface layer
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Non-binding request handler

Non binding request handler
A Estimate queue delay for each chip
A Re assign non - binding requests to a new chip

A Notify FTL task of the selection

Host: 80%
GC: 20%

Host program
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Evaluation methodology

A Storage system configuration

A FTL tasks: host request handling & garbage collection
A Generate a stream of asynchronous flash memory requests
A Inter-arrival time for requests to model processing overhead for tasks

A FTL with 4KB mapping granularity
A Garbage collection with greed policy (select block with minimum # of valid data)
A ~14% over-provisioning factor
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Evaluation methodology

A Storage system configuration

A FTL tasks: host request handling & garbage collection
A Generate a stream of asynchronous flash memory requests
A Inter-arrival time for requests to model processing overhead for tasks

A FTL with 4KB mapping granularity
A Garbage collection with greed policy (select block with minimum # of valid data)
A ~14% over-provisioning factor

A Workload configuration

A lIssue rate: 5K IOPS
A Such that both host request handling & garbage collection run concurrently
A While not causing requests to queue up unboundedly

A Duration: 1 hour simulation time (up to 18M 10s)
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Experiment 1: Establishing baseline

QoS unaware . schedule in order of arrival
Throttling . limit bandwidth use
QoS aware (FSS) : 50:50 share
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Experiment 1. Establishing baseline

QoS unaware : schedule in order of arrival
Throttling . limit bandwidth use
QoS aware (FSS) : 50:50 share
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Throuhgput (IOPS)

Experiment 1: Establishing baseline
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QoS unaware . schedule in order of arrival
Throttling . limit bandwidth use
QoS aware (FSS) : 50:50 share
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Experiment 1: Establishing baseline

QoS unaware . schedule in order of arrival

Throttling . limit bandwidth use

QoS aware (FSS) : 50:50 share
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